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Social distancing is the core policy response to coronavirus dis-
ease 2019 (COVID-19). But, as federal, state and local governments
begin opening businesses and relaxing shelter-in-place orders
worldwide, we lack quantitative evidence on how policies in one
region affect mobility and social distancing in other regions and
the consequences of uncoordinated regional policies adopted in
the presence of such spillovers. To investigate this concern, we
combined daily, county-level data on shelter-in-place policies with
movement data from over 27 million mobile devices, social net-
work connections among over 220 million Facebook users, daily
temperature and precipitation data from 62,000 weather stations,
and county-level census data on population demographics to esti-
mate the geographic and social network spillovers created by
regional policies across the United States. Our analysis shows
that the contact patterns of people in a given region are sig-
nificantly influenced by the policies and behaviors of people in
other, sometimes distant, regions. When just one-third of a state’s
social and geographic peer states adopt shelter-in-place policies,
it creates a reduction in mobility equal to the state’s own pol-
icy decisions. These spillovers are mediated by peer travel and
distancing behaviors in those states. A simple analytical model
calibrated with our empirical estimates demonstrated that the
“loss from anarchy” in uncoordinated state policies is increasing
in the number of noncooperating states and the size of social and
geographic spillovers. These results suggest a substantial cost of
uncoordinated government responses to COVID-19 when people,
ideas, and media move across borders.

COVID-19 | peer effects | social spillovers | geographic spillovers

Pandemics are interdependent phenomena. Viruses and peo-
ple’s adherence to the government policies designed to con-

tain them spill over from region to region. Early on, coronavirus
disease 2019 (COVID-19) spread through international and
domestic travel (1, 2). It is less well known, however, how behav-
ioral responses to the pandemic and to government mitigation
policies spill over from region to region due to geographic move-
ment or social influence. As different regions begin to adopt het-
erogeneous reopening policies—with some opening businesses
and relaxing shelter-in-place orders and others remaining closed
and maintaining those orders—it is critical to understand how
regional policies affect one another and the cost of adopting
uncoordinated policies across regions.

Governments have enacted a variety of nonpharmaceutical
interventions to reduce the spread of severe acute respira-
tory syndrome coronavirus 2, including social distancing policies
designed to reduce high-density interactions among people in a
particular region. Analyses of historical disease spread (3) and
COVID-19 (4) indicate adherence to social distancing is crucial
to slowing the spread of the pandemic, especially in the absence
of a vaccine. But, while social distancing policies have, by and
large, been left to individual cities, counties, states, and nations,

uncoordinated policy interventions neglect that many geographic
borders are porous and that increased social interdependence
through communication media could create behavioral social
influence across even distant regions.

In cases where coordination has occurred (for instance, in the
northeastern United States), it has often been at the level of
the “megaregion” (5). While intuitive, these local coordination
efforts neglect the possibility that peoples’ behaviors are influ-
enced not just by those in their local communities but also by
those with whom they are geographically distant but socially con-
nected through mobile phones, video conferencing, and social
media. These social spillovers may be even more relevant to the
spread of COVID-19 as shelter-in-place orders have increased
our reliance on digital connections, creating record-breaking
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Fig. 1. (A) The social and geographic adjacency weights for two counties and the difference between them. For each county, geographic weights are
generally stronger for nearby counties, whereas social weights are stronger for geographically distant counties. (B) The time series trends for the number
of locations visited per device and the fraction of devices leaving home across county quartiles determined by the time at which each county introduced a
shelter-in-place policy (if at all). Thicker lines correspond to periods of time where shelter-in-place was in effect. (C) The fraction of devices leaving home for
two counties, along with the amount of precipitation in each county. Areas of the graph shaded in red correspond to periods during which shelter-in-place
was in effect. In general, fewer devices leave home when it is raining, providing visual evidence of the strength of our weather instruments.
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usage of social media and video conferencing to maintain our
social ties across geographic distance (6).

Recent studies have used population-scale digital trace data
(7) to measure the impact of social distancing policies on mobil-
ity, interaction intensity, and, in some cases, COVID-19 infec-
tions and their associated morbidity and mortality (8–11). These
studies found adherence to social distancing policies is mod-
erated by demographic attributes such as political affiliation
(8, 10), age, gender, educational attainment (12), income, and
access to high-speed internet (13). Unfortunately, our under-
standing of the impact of social distancing policies on mobil-
ity, infection rates, morbidity, and mortality is limited because
existing research has not credibly accounted for social and geo-
graphic spillovers, which, if large, could substantially alter our
perceptions of the effectiveness of local policies.

Researchers have causally identified the existence of social
contagion in offline behaviors such as exercise (14), product
adoption (15), and voting (16). Others have shown the potential
for local policies to cause geographic spillovers to neighboring
communities (17). Given these empirical regularities, it is likely
that an individual’s mobility and adherence to social distanc-
ing are impacted not only by policies in their own regions but
also by the policies of neighboring regions and distant regions
in which their social network connections reside. Put differently,
a local government’s social distancing policy may significantly
impact the health outcomes of other communities, including
those that are geographically proximate or those that are geo-
graphically distant but socially proximate. The existence of such
spillovers could imply substantial health and economic conse-
quences to adopting uncoordinated policies across socially and
geographically connected regions.

Here, we measure mobility across borders, adherence to social
distancing, and high-density interactions between people in phys-
ical space using population-scale digital trace mobility data from
Safegraph (18) and Facebook (19). The Safegraph data record
the location and movement of over 22 million mobile devices,
including the fraction of mobile devices staying home each day
in every US county, the average number of locations visited by
mobile devices each day in every US county, and the number
of visits to distinct points of interest each day in every county.
The Facebook data, which cover over 27 million mobile devices,
also record the fraction of mobile devices staying home each day
in every US county and the average number of locations mobile
devices visit each day in each US county.

We augmented these mobility datasets with an index of the
degree to which different US counties are socially connected
on Facebook (20), temperature and precipitation data from the
National Oceanic and Atmospheric Administration’s global his-
torical climatology network database (21), census counts of each
US county’s total population, and a detailed database of the
timing of COVID-related government interventions in every US
county (22). This combination of data allowed us to causally esti-
mate the direct effect of government social distancing policies on
local mobility, the indirect effects of other governments’ social
distancing policies on local mobility, and the mediation of these
effects by social influence and geographic proximity across the
entire United States. Fig. 1 highlights various attributes of these
datasets that will be key to our analyses. We specifically focus on
mobility outcomes, rather than health outcomes such as mortal-
ity rates and hospitalizations, as social distancing policies directly
target mobility behavior and because there are known data qual-
ity issues for health-related outcomes. We focus our analysis on
the 2,502 US counties appearing in both the Facebook and Safe-
graph data from March 1, 2020 to April 18, 2020, during which
the vast majority of social distancing policies were implemented
in the United States.

We first estimated a difference-in-differences (DiD) model
that considered the direct county-level effect of social distancing

policies, but did not account for geographic or social spillovers
(SI Appendix, section S2). Consistent with previous studies (8,
23), we found that implementing a shelter-in-place policy led to
a 3.2% (P < 0.001) decrease in the fraction of devices leaving
their homes and a 6.0% decrease (P < 0.001) in the number of
locations visited.* While this specification suggested that social
distancing policies are effective at curbing mobility when enacted
by focal states, it fails to account for geographic spillovers and
social spillovers, and may therefore overstate the effectiveness
of any one county’s or state’s policy.

We therefore estimated DiD models that account for geo-
graphic spillovers, according to a geographic adjacency matrix,
and social spillovers, according to a social adjacency matrix. We
constructed the geographic adjacency matrix using the Safegraph
data from January and February 2020 to calculate the fraction
of Census block group visits to county i from people living in
county j (SI Appendix, section S1). We constructed the social
adjacency matrix by combining Facebook’s Social Connected-
ness Index with Census data to calculate the fraction of county
i ’s Facebook ties that are to friends in county j (SI Appendix,
section S1).

We began by estimating a DiD model that quantifies geo-
graphic spillovers, but not social spillovers (SI Appendix, section
S2). In some sense, this specification accounts for spillovers in
the same way mayors and governors who are currently coor-
dinating at the “megaregion” level may account for them—by
considering geographically proximate peer regions. Results from
this model, shown in Fig. 2A, suggest that, when account-
ing for geographic spillovers, a focal county implementing a
shelter-in-place order reduced the average number of loca-
tions visited in that county by 4.0% (P < 0.001). But, when
half of the county’s geographic alters also implemented shelter-
in-place orders, it further reduced the average number of
locations visited in the focal county by 2.3% (P < 0.001). A
focal county implementing a shelter-in-place order reduced
the fraction of devices leaving home in that county by 2.0%
(P < 0.001). But, when half of the county’s geographic alters
also implemented shelter-in-place orders, it further reduced
the fraction of devices leaving home in the focal county by
1.4% (P < 0.001).

When we estimated the impact of these geographic spillovers
on mobility in a dyadic DiD model (SI Appendix, section S2),
we found that, when only one county in a dyad implemented
a shelter-in-place policy, travel from that county to the nonim-
plementing county increased by 0.55% (P =0.05) on average,
while travel from the county not implementing the policy to
the county implementing the policy decreased by 1.2% (P <
0.01). When both counties implemented shelter-in-place orders,
travel between the counties decreased by 0.51% (P < 0.001). The
results in Fig. 2 A and B validate the importance of coordinating
geographically connected regions to, for example, reduce travel
across borders from counties in which businesses are closed to
neighboring counties in which businesses are open. But, they fail
to account for social spillover effects.

When we estimated a DiD model that distinguished between
within-state and across-state alters, we found that, when con-
sidering both social and geographic spillovers, the estimated
spillover effect from 100% of alter states implementing a shelter-
in-place policy was a 13% reduction (P < 0.001) in locations
visited and a 9.1% reduction (P < 0.001) in the fraction of
devices leaving home (Fig. 2C) (SI Appendix, section S2). Under
this model, policy spillover estimates, when accounting for social
spillovers, are over 2 times larger than when only considering

*Although we estimate similar effects for both Safegraph and Facebook outcomes, we
refer explicitly to the Safegraph estimates in the text. However, both Safegraph and
Facebook results are shown in Figs. 1–3A, and throughout the SI Appendix.
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Fig. 2. (A) Comparison of the results of our DiD model that ignores spillovers and estimates the effect of a policy on its “own county” and our DiD model
that includes geographic spillovers and separates the effects of a policy on its own county (“own county [acc. for geo]”) from the effects of the policies of
geographically connected counties (“Geographic alters”). For both the fraction of devices leaving home and the number of locations visited, the geographic
spillovers are approximately equal in magnitude to the direct effects of ego county shelter-in-place policies. (B) The results of a county-level dyadic DiD
model using either all county pairs or only adjacent county pairs. When only an “origin” county implements a shelter-in-place policy, outbound travel to
the destination county increases. Only when either the destination county or both counties implement shelter-in-place does travel to the destination county
decrease. (C) Comparison of our estimates of the direct effect of shelter-in-place, as well as the spillover effects of other states’ shelter-in-place policies, with
and without accounting for social spillovers. When we account for social spillovers, the magnitude of our spillover estimates increases by over a factor of 2.

geographic spillovers. In other words, it is not only the policy
decisions of geographically proximate states that affect outcomes
in a focal state but also the communities to which that state is
socially connected through communication technology. Results
from this model also suggest that 36% of a state’s geographic
and social peer states implementing shelter-in-place policies is
as effective at reducing mobility as the focal state implementing
its own shelter-in-place policy.

Our analyses thus far establish the importance of two types
of connections that contribute to spillovers: geographic proxim-
ity and social influence. However, although our DiD estimates
show that social spillovers are an important determinant of a
focal county’s mobility levels, these estimates do not establish
the underlying mechanisms that drive these effects. It is unclear
whether changes in focal county mobility levels are driven by
knowledge of peers’ counties’ policies, changes in the behavior
of socially connected peers, or another mechanism. To identify
the extent to which this effect is driven by changes in peer behav-
iors, we employed our instrumental variables (IV) estimation
framework and, while controlling for peers’ shelter-in-place poli-
cies, instrumented for the behavior of peers in socially connected
counties using weather, shifts in industry visit shares, and their
interaction with peers’ shelter-in-place policies (SI Appendix, sec-

tion S3). We estimated that a 3.0% reduction in the number
of peer locations visited leads to a 5.6% reduction in the num-
ber of locations visited in a focal county (P < 0.001) and that a
1.5% reduction in the number of peers leaving their home loca-
tion leads to a 2.4% reduction in the number of focal county
devices leaving their home location (P < 0.001) (Fig. 3A). These
effect sizes suggest that social spillovers are substantially medi-
ated by peer behavior. In other words, people in a focal state are
significantly influenced by the behavior of their peers in other
states when calibrating their own social distancing behaviors and
choices.

We also combined our social and geographic adjacency matri-
ces with the point estimates obtained from our DiD with
spillovers model to estimate the strength of interdependence
between each pair of US states to understand, for example, how
much mobility would go down in state j if state i implemented a
shelter-in-place policy (SI Appendix, section S5). Fig. 3C shows
the ego networks for eight US states chosen from across the
country (we report results for all 50 states and Washington,
D.C. in SI Appendix). Generally speaking, each state’s mobil-
ity outcomes are impacted by the policy decisions of not just
geographically proximate states but also socially connected, dis-
tant states. For instance, Florida’s mobility is most affected by

19840 | www.pnas.org/cgi/doi/10.1073/pnas.2009522117 Holtz et al.
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Fig. 3. (A) The causal effect of endogenous mobility levels in Facebook alter counties on mobility levels in focal counties estimated using an IV framework.
The magnitudes of endogenous peer effects are scaled to the direct effect of shelter-in-place orders in their own state. (B) The region-level probability
distribution functions for the size of the total spillover effect from alter states in each US region, relative to the direct effect of each focal state’s own
shelter-in-place policy. (C) The ego networks for eight different US states. For each state, we display the 20 alter states whose own shelter-in-place policy
causes the largest reductions in mobility levels in the ego state, according to our DiD model. Both the edge weight and the alter node color correspond to
the amount of influence the alter exerts on the ego. (D) The 20 states whose shelter-in-place policies cause the greatest reduction in devices leaving home
across the United States, according to our DiD model.

New York implementing shelter-in-place, presumably through
digitally mediated social influence or travel, despite the states
being distant. New Hampshire has a strong influence on adjacent
Massachusetts, despite being a small state. These interdepen-
dence estimates can also be combined with state population
levels to estimate the US states whose shelter-in-place policies
would lead to the greatest reductions in mobility across the rest
of the United States (Fig. 3C). A state’s total spillover influence
is highly correlated, but not equivalent to, that state’s popula-
tion size. This highlights the need for states across the country
to coordinate, even if they are not near one another, and our
results suggest which states should be coordinating with which
other states based on the strength of spillovers between them.

Finally, we used our empirical estimates to calibrate a sim-
ple game-theoretic model of the inefficiency created by states
failing to coordinate over social and geographic spillovers (SI
Appendix, section S6). In the model, each states’ social distancing
outcomes depend on their own (linearly costly) mobility poli-
cies as well the policy of other states. We further assume that
each state has a specific (exogenous) “target” mobility they aim
to achieve. When states are uncoordinated, they play a one-shot
game without transfers where each state chooses its own level
of mobility policy restrictiveness by balancing the direct policy
cost and a quadratic loss function for missing their own mobil-
ity target. We compare the aggregate utility achieved under the
Nash equilibrium of this game to the aggregate utility achieved
under optimal coordination by a social planner for varying levels
of spillover intensity. The difference between the Nash equilib-
rium outcome and the socially optimal outcome characterizes
losses from uncoordinated policies, while the choices states make
in equilibrium characterize the free-riding and compensation

for other states’ negligence that take place in the absence of
coordination.

When spillovers or the cost of implementing policies are low,
welfare under coordination through a social planner is not much
higher than in a Nash equilibrium. But, when spillovers and
costs are high, the lack of coordination can be quite costly.
Utility can be up to 69% lower when states fail to coordinate
in the presence of spillovers as large as those we detect in
our empirical analyses (Fig. 4A). Furthermore, when spillovers
are high, states’ policies diverge, as one state needs to com-
pensate for the neglect of another state’s loose restrictions
by imposing even stricter, more costly policies than necessary
to achieve their desired mobility target. When states coordi-
nate, however, social and geographic spillovers actually help
them achieve their targets more efficiently because they essen-
tially provide “free treatments” as the cooperative behaviors
of peer states positively influence social distancing behaviors
in focal states.

This work is not without limitations. First, while our estimates
of peer influence utilize weather and shift share instruments, our
estimates of the interdependence between individual US states
rely on our DiD analysis, which may miss some state- or dyad-
level heterogeneity. Furthermore, although our analysis of lags
and leads suggests the robustness of our analysis (presented in
SI Appendix), our DiD estimates may not capture all anticipatory
behavior (e.g., people stocking up on groceries before govern-
ment policies take effect). In SI Appendix, we more carefully
examine the robustness of our estimates to these and other chal-
lenges, but this work nonetheless relies on assumptions that are
not fully testable. Additionally, our DiD analyses do not control
for factors such as COVID-19–related hospitalizations and/or

Holtz et al. PNAS | August 18, 2020 | vol. 117 | no. 33 | 19841
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Fig. 4. Mobility reduction targets, optimal policy choices, equilibrium mobility reductions, and utility under anarchy (Nash Equilibrium) and coordination
(Social Optimum). (A) Mobility outcomes achieved (faint) under varying levels of spillover strength (x axis) for a pair of states with similar but not identical
reduction targets (dash-dot-dotted lines) and their resulting policy choices (dark lines). The gray shading and gray vertical line correspond to the minimum,
median, and maximum spillover strengths we observe in our DiD estimates of between state spillovers (the model producing the gray shaded estimates in
Fig. 2C). (B) When spillover strength is low, Nash equilibrium policies for both states are similar, and there is no loss from anarchy compared to coordination.
As spillovers get stronger, policies for two states diverge. Under coordination, this divergence decreases equilibrium mobility toward the target, but, under
anarchy, the states’ actions wastefully offset, leaving outcome mobility unchanged as spillover strength increases. (Inset) Utility under both equilibria.
Maximum utility is increasing in spillovers because they, in a sense, create “free” reductions in mobility. The loss from anarchy is increasing in both the size
of spillovers and the cost of mobility reductions. Spillovers are assumed to be symmetrical. In A, the cost of implementing policies is set at 1.

deaths, which may affect the timing with which social distancing
policies were imposed. However, it is not clear how to appro-
priately control for these factors, since the “correct” control is
likely policy makers’ perceptions of COVID-19–related health
outcomes at the time of decision-making, as opposed to the
actual number of hospitalizations or deaths. Finally, when treat-
ment is staggered, the DiD estimand is a weighted average of
every possible pairwise treatment effect. The weighting function
used to construct this estimand has recently been characterized
for the case of a binary treatment variable (24), but is still not
well understood when the treatment variable is continuous and
its effects are dynamic.

As government officials around the world begin to calculate
the costs and benefits associated with lifting social distancing
policies, it is crucial we accurately estimate these policies’ effects.
Our findings indicate that any given government’s decision to
lift a social distancing policy will likely affect the behavioral
and health outcomes of not only their own citizens but also
the citizens of geographically and socially proximate communi-
ties. These results suggest there are significant negative welfare
repercussions from uncoordinated government social distancing
policies, which suffer from a coordination problem resembling
the price of anarchy (25). This implies that it is important for
federal governing bodies (e.g., the United States federal govern-
ment and the European Union) to coordinate policy action, even
in cases where final policy decisions are in the hands of local
governments. In the absence of coordination by federal govern-
ing bodies, we recommend that individual countries, states, and
counties coordinate with the countries, states, and counties to
which they are the most strongly geographically and socially con-
nected. In the United States, our estimates provide governors
with direct guidance on which other states are influencing their
states the most (see SI Appendix, section S5 for coordination
maps for all 50 states and Washington, D.C.). These coordina-
tion maps could also be created for localities around the world,
using our methods. As states begin to reopen, we recommend
that governors use these maps to establish direct coordination

between influencing states, to keep each other abreast of chang-
ing policies, to model the effects of other states’ actions on
outcomes in their own states, and to coordinate regional and
superregional policies to maximize the effectiveness of local poli-
cies. Our model suggests that spillovers can benefit states in the
presence of coordination. We therefore hope our work inspires a
greater level of such coordination between local government offi-
cials when determining policies related to social distancing and
future research into the indirect effects of these policies.

Materials and Methods
We first estimated the causal effects of county-level shelter-in-place orders
on their own county’s population mobility, measured by the fraction of
mobile devices leaving home and the mean number of locations visited
per device, as well as their effects on mobility in counties to which they
are geographically connected through physical proximity or socially con-
nected through social media on Facebook, using the following DiD model
specification:

Yit = δ1Dit + δ2Dgeo
−it + δ3Dsocial

−it + f(Wit) +αi + τt + εit , [1]

where Yit denotes the social distancing outcome, Dit indicates whether
shelter-in-place has been enacted in county i in time period t, Dgeo

−it is the

geographic adjacency weighted average of peer county policies, Dsocial
−it is

the social adjacency weighted average of peer county policies, and f(Wit) is
a term that flexibly controls for the potential nonlinear impact of weather
using a “double machine learning” approach (26). αi and τt represent a set
of county and time fixed effects, and εit denotes the error term. Our statis-
tical inference allows for correlations between counties that are socially or
geographically connected or located in the same US states using adjacency-
and cluster-robust standard errors (27). Although not explicitly indicated in
this notation, we estimate DiD models that treat all alter counties equiv-
alently, and also DiD models that distinguish between same-state counties
and different-state counties. Here we report results for shelter-in-place poli-
cies, which typically supersede business closures. We report results for both
shelter-in-place policies and business closures in SI Appendix.

While the DiD analysis allowed us to measure the effect of connected
counties’ policies on focal counties’ population mobility, the effect of con-
nected counties’ policies could be driven by awareness of the policies of
nearby US counties and states, changes in friends’ behavior, or the amount

19842 | www.pnas.org/cgi/doi/10.1073/pnas.2009522117 Holtz et al.
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of intercounty and interstate travel between regions. We therefore used IV
analysis to estimate the mechanisms driving geographic and social spillovers
by separately measuring the effects of connected county policies and the
effects of peer behavior within connected counties on mobility in focal
counties. Our IV analysis uses exogenous variation in weather (14, 28, 29)
and the extent to which different counties are exposed to national changes
in industry visit behavior based on prepandemic data (30, 31) as exoge-
nous shocks to peer behaviors in connected counties to identify their causal
influence on mobility behavior in focal counties.

We estimate the following main and first-stage model specifications:

Yit = βY−it + δ1Dit + δ2Dgeo
−it + δ3Dsocial

−it

+ψSit + f(Wit) +αi + τt + εit

[2]

Y−it = γ1Dit + γ2Dgeo
−it + γ3Dsocial

−it +πSit + g(Wit)

+ h(Dsocial
−it , S−it , W−it) +α−i + τt + ν−it ,

[3]

where Yit , Dit , Dgeo
−it , Dsocial

−it , f(Wit), αi , τt , and εit are as they were in Eq. 1.
Y−it denotes the social adjacency weighted average mobility behaviors of
individuals in other counties, and the main parameter of interest β repre-

sents the endogenous peer effect of that behavior. Sit is the set of industry
shift-shares for county i. In the first stage, g(·) is also a function that cap-
tures the nonlinear effects of Wit . D−it and the social adjacency weighted
averages of alter counties shift-shares and weather, S−it and W−it , and their
interactions, form the set of candidate instruments. The associated function
h(·) is a post-least absolute shrinkage and selection operator (post-LASSO)
(32) that selects a smaller set of instruments. Lastly, ν−it denotes the first-
stage error term. We report adjacency- and cluster-robust standard errors.
Further details are provided in SI Appendix. This research was reviewed
and classified as exempt by the Massachusetts Institute of Technology (MIT)
Committee on the Use of Humans as Experimental Subjects (i.e., MIT’s Insti-
tutional Review Board), because the research was secondary use research
involving the use of de-identified, aggregate data.

Data Availability. Code and information regarding data access are available
on GitHub (https://github.com/mfzhao/covid interdependence).
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(Information Systems for Crisis Response and Management, Valencia, Spain, 2019),
pp. 19–22.

20. M. Bailey, R. Cao, T. Kuchler, J. Stroebel, A. Wong, Social connectedness: Measure-
ment, determinants, and effects. J. Econ. Perspect. 32, 259–80 (2018).

21. M. J. Menne, I. Durre, R. S. Vose, B. E. Gleason, T. G. Houston, An overview of the
Global Historical Climatology Network-Daily database. J. Atmos. Ocean. Technol. 29,
897–910 (2012).

22. B. D. Killeen et al., A county-level dataset for informing the United States’ response
to COVID-19. arXiv:2004.00756 (1 April 2020).

23. A. Brzezinski, G. Deiana, V. Kecht, D. Van Dijcke, “The COVID-19 pandemic: Govern-
ment vs. Community action across the United States” (Tech. Rep. 2020-06, Institute
for New Economic Thinking, 2020).

24. A. Goodman-Bacon, “Difference-in-differences with variation in treatment timing”
(Report 25018, National Bureau of Economic Research, 2018).

25. E. Koutsoupias, C. Papadimitriou, “Worst-case equilibria” in Annual Symposium on
Theoretical Aspects of Computer Science, C. Meinel, S. Tison, Eds. (Springer, 1999),
pp. 404–413.

26. V. Chernozhukov et al., Double/debiased machine learning for treatment and
structural parameters. Econom. J. 21, C1–C68 (2018).

27. T. G. Conley, GMM estimation with cross sectional dependence. J. Econom. 92, 1–45
(1999).

28. L. Coviello et al., Detecting emotional contagion in massive social networks. PloS One
9, e90315 (2014).

29. S. Aral, M. Zhao, Social media sharing and online news consumption. https://
papers.ssrn.com/sol3/papers.cfm?abstract id=3328864. Accessed 7 May 2020.

30. T. J. Bartik, Who Benefits from State and Local Economic Development Policies? (W.E.
Upjohn Institute for Employment Research, 1991).

31. P. Goldsmith-Pinkham, I. Sorkin, H. Swift, “Bartik Instruments: What, when, why, and
how” (Report 24408, National Bureau of Economic Research, 2018).

32. A. Belloni, D. Chen, V. Chernozhukov, C. Hansen, Sparse models and methods for
optimal instruments with an application to eminent domain. Econometrica 80, 2369–
2429 (2012).

Holtz et al. PNAS | August 18, 2020 | vol. 117 | no. 33 | 19843

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
30

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2009522117/-/DCSupplemental
https://github.com/mfzhao/covid_interdependence
https://about.fb.com/news/2020/03/keeping-our-apps-stable-during-covid-19/
https://about.fb.com/news/2020/03/keeping-our-apps-stable-during-covid-19/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3569098
https://connection.mit.edu/sites/default/files/publication-pdfs/Effect%20of%20social%20distance%20measures%20in%20social%20distancing%20in%20the%20NY%20area.pdf
https://connection.mit.edu/sites/default/files/publication-pdfs/Effect%20of%20social%20distance%20measures%20in%20social%20distancing%20in%20the%20NY%20area.pdf
https://connection.mit.edu/sites/default/files/publication-pdfs/Effect%20of%20social%20distance%20measures%20in%20social%20distancing%20in%20the%20NY%20area.pdf
https://osf.io/xpwg2/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3328864
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3328864

